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Lecture 1 : Qualitative description of the uni-
verse

Plan

1. The universe before 1920

2. The 1920 revolutions

3. The standard universe in modern cosmology

4. General relativity

5. The Friedmann-Lemâıtre metric in flat space

6. The cosmological redshift
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1. The universe before 1920

The universe is eternal (since its creation), static, and unchan-
ging

Knowledge limited to our galaxy, the Milky Way : 100 000 light
years (l-y). Sun about 28 000 l-y from center.

Some hints that Andromeda and Magellan clouds do not be-
long to Milky Way
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Fig. 1 – The Milky Way
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Fig. 2 – Andromeda, the M31 galaxy. Spins too fast, stars should be
ejected, spherical dark matter halo
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Olbers paradox : at night, the sky should appear uniformly
bright, any line of sight should meet a star. Analogy with a
forest : in a dense forest, each line of sight meets a tree
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Fig. 3 – Distance of visibility in a static universe.

Visibility limit : ∼ 1022 l-y, while age of the universe + finite
speed of light =⇒ we can see at most as far as ∼ 1010 l-y.
Furthermore redshift, but marginal influence only.
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However in microwave domain wee see a uniformly bright sky
in all directions ! Cosmic Microwave Background, or CMB :
snapshot of the universe 13 billion years ago

2. The 1920 revolutions

Fig. 4 – The founding fathers of modern Cosmology. Albert Einstein
(1879-1955) ; Edwin Hubble (1889-1953) ; Georges Lemâıtre (1894-1966).
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Georges Lemâıtre : “As far as I can see, such a theory (e.g.
the Big Bang) remains entirely outside any metaphysical or
religious question.”

First revolution : Hubble
1 There are galaxies outside our Milky Way
2 The galaxies fly away from us with a speed proportional

to their distance (flight of galaxies)

Second revolution : Einstein (General Relativity), Friedmann,
Lemâıtre

3 Static universe incompatible with General Relativity :
unstable solution

4 Expansion of the universe described by General Relati-
vity : Friedmann-Lemâıtre metric
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How do we measure distances ? We know (or we assume to
know) the luminosity of “standard candles”

1. Cepheids : relation period-luminosity

2. Type Ia supernovae, white dwarfs which accrete material
from a neighboring star until they explode, peak lumino-
sity believed to be known

Energy flux f function of the luminosity L and distance d

f =
L

4πd2
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Fig. 5 – The flux-luminosity relation. E = σf = σL/(4πd2)
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3. The standard universe in cosmology

1. Over distances of about 500 millions l-y, the universe is
homogeneous (has the same properties at each point) and iso-
tropic (has the same properties in all directions). Of course lo-
cal fluctuations : stars, galaxies, clusters of galaxies. Best evi-
dence : isotropy of the Cosmic Microwave Background (CMB)

2. The matter we can observe, that which emits light or elec-
tromagnetic radiation, must be supplemented by dark matter.
Dark matter does not interact with light and with ordinary
matter, except for gravitational interactions, expect (G = gra-
vitational constant)

GM(r)

r2
=

v2(r)

r

We do not find v(r) ∝ r−1/2 but rather v(r) ∼constant. Other
evidence : gravitational lensing.
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Fig. 6 – Angular velocity of stars and gas clouds in the Triangle Galaxy
M33 as a function of distance from center.
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3. Hubble’s law, v = H0d, v = galaxy velocity, d = distance,
H0 = Hubble’s constant
Age t0 of the universe, with constant expansion

v = H0d = H0vt0 t0 ≃ tH =
1

H0

Latest values from Planck (2014) 1 parsec = 3.26 l-y

H0 = 67.3 ± 1, 2 km.s−1/Mpc = 2.08 ± 0, 04 × 10−18 s−1 ,

tH =
1

H0

= 4.80 × 1017 s = 15.2 × 109 years

Cosmological redshift from Doppler effect v/c ≪ 1

v

c
=

∆λ

λ
≃ z
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4. General Relativity

Or better Einstein’s theory of gravitation. Two ingredients

1. Universality of free fall : in a gravitational field, all ob-
jects fall at the same rate.

2. Equivalence principle : gravitational field locally equiva-
lent to acceleration. Einstein’s happiest thought

Metric. For a time-like interval gives the proper time τ : time
as measured by a clock linked to an observer or a particle.
Coordinates xµ of a space-time point x, metric tensor gµν(x)
µ, ν = 0, 1, 2, 3

dτ 2 = gµν(x) dxµdxν
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For a finite space-time interval

τ(A → B) =

∫ B

A

√

gµν(x) dxµdxν

In the absence of forces other than gravitation, a particle fol-
lows a space-time geodesic which maximizes its proper time.

Einstein equations. From the metric, compute the Ricci
tensor Rµν , the scalar curvature R = Rµ

µ. Then

Rµν −
1

2
R gµν = −8πGTµν − Λgµν

Tµν = energy-momentum tensor, G = gravitational constant,
Λ = cosmological constant. Einstein’s theory is a local theory,
does not care about global topology, for example plane ≡ cy-
linder or torus
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Cosmological constant : Einstein “biggest blunder of my life !”

Einstein equations determines geometry (Rµν), whence the
metric (gµν), as a function of energy (Tµν). Particle in free fall
follows geodesics of the metric.

1. Matter tells space how to curve

2. Curvature tells matter how to move

0-16



5. The Friedmann-Lemâıtre metric

Because of isotropy, the three dimensional-space orthogonal
to geodesics at a given time may be of three types only

1. A three dimensional sphere in a four dimensional-space
(constant positive curvature)

2. A flat ordinary three dimensional space (zero curvature)

3. A three dimensional hyperbolic surface (constant nega-
tive curvature)

Fortunately, Nature has been kind, observation favors scena-
rio (2). Galaxy (X,Y, Z), Euclidean distance from our own
Galaxy, Pythagora’s theorem

d(t) = [X2 + Y 2 + Z2]1/2
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Fig. 7 – Foliation of four-dimensional space-time. Galaxies in free fall,
choose time = proper time of each galaxy = time elapsed since Big Bang.
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Universe expansion : d(t) increases with time. Define scale
factor a(t) and comoving coordinates (x, y, z). Scale factor
dimensionless, a(t0) = a0 = 1

d(t) = a(t)dcom

X = a(t)x Y = a(t)y Z = a(t)z

Then galaxies have fixed coordinates ! Two galaxies separated
by comoving interval (∆x,∆y,∆z), distance at time t

d(t) = a(t)
[

(∆x)2 + (∆y)2 + (∆z)2
]1/2

= a(t)dcom

Friedmann-Lemâıtre metric

c2dτ 2 = c2dt2 − a2(t)
[

dx2 + dy2 + dz2
]
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Fig. 8 – Comoving coordinates in three dimensional space-time, space
with constant positive curvature.
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6. Cosmological redshift

Spherical coordinates, Friedmann-Lemâıtre metric

dτ 2 = dt2 − a2(t)[dr2 + r2dΩ2]

= dt2 − a2(t)[dr2 + r2(dθ2 + sin2 θ dϕ2)]

Consider two galaxies r = 0 (us !) and r = rcom.

Photon emission : te, te + ∆te

Photon reception : t0, t0 + ∆t0
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Fig. 9 – Photon propagation in (ct, r) coordinates. Propagation in
conformal coordinates (η, r)
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As dτ 2 = 0 for a photon, in comoving coordinates

rcom =

∫ t0

te

dt

a(t)
=

∫ t0+∆t0

te+∆te

dt

a(t)

so that
∆t0
a(t0)

=
∆te
a(te)

cosmological redshift z

1 + z =
λ0

λe

=
ωe

ω0

=
a(t0)

a(te)
> 1

z = observational quantity : unambiguous, model independent,
while e.g. age of the universe model dependent. For example,
CMB : z = 1 100, farthest observable galaxies (quasars) z ∼

10
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Conformal coordinates t → η

η = c

∫ t

te

dt′

a(t′)

Relation with Hubble’s law

v = ȧ(t0)dcom = H0a(t0)dcom

so that H0 = ȧ(t0)/a(t0). Hubble parameter H(t)

H(t) =
ȧ(t)

a(t)

What is the meaning of t = 0 ? Big Bang instant ? Classical
GR, t = 0 is singular, curvature becomes infinite. Big Bang
theory valid for t > 0, so the Big Bang instant is not part of
the Big Bang theory !
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A simple model for a(t) : matter dominated universe. tH =
1/H0, t0 < tH because of deceleration

a(t) = (t/t0)
2/3
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